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Overview

1. Manifold Learning

2. Interpolation, Differentiation, and Projection

3. Estimating the Laplace-Beltrami Operator

4. Estimating the Bochner Laplacian
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Basic Setup

• (M, g) is a compact Riemannian manifold of dimension d .
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Basic Setup

• (M, g) is a compact Riemannian manifold of dimension d .

• M ⊆ Rn, where n ≫ d .

• A data set X = {x1, . . . , xN} of points sampled i.i.d. from M.

Goal of Manifold Learning

Use the data to construct a matrix which approximates an operator which encodes
information about the manifold.

Example

∆M : C∞(M) → C∞(M), the Laplace-Beltrami operator. In smooth local coordinates,

∆M f =
−1√
det g

∂

∂θi

(
g ij

√
det g

∂f

∂θj

)
.
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Interpolation, Differentiation, and Projection

Function on M Vector field on M
gradg
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New Additions
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New Additions

• Key fact:
gradg f = PgradRnF

• Much work has been done within in this framework (see, for instance,
[Fuselier and Wright, 2012]).

• We adapt this framework to the manifold learning setup.

• We alter existing methods to obtain symmetric estimators in this framework.

• We extend such approximations to more general differential operators between tensor
bundles.
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Learning P

• At each x ∈ M, consider TxM ⊆ TxRn.
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• At each x ∈ M, consider TxM ⊆ TxRn.

• There is an n × n matrix orthogonal projection matrix P := TxRn → TxM ⊆ TxRn.

• The entries of P can be written in terms of the Riemanian matrix g and the
embedding (θ1, . . . , θd) → (X 1, . . . ,X n) :

[P]ij =
∂X i

∂θr
g rs ∂X

j

∂θs
.

20 / 49



Learning P

• At each x ∈ M, consider TxM ⊆ TxRn.

• There is an n × n matrix orthogonal projection matrix P := TxRn → TxM ⊆ TxRn.

• The entries of P can be written in terms of the Riemanian matrix g and the
embedding (θ1, . . . , θd) → (X 1, . . . ,X n) :

[P]ij =
∂X i

∂θr
g rs ∂X

j

∂θs
.

• Methods exist for approximating P [Zhang and Zha, 2004, Tyagi, et al, 2013].
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Learning P

• Note that if T = (τ1, . . . , τd) denotes a matrix with orthonormal columns that span
TxM, then P := TT⊤.
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• Methods for learning P relate the distance y − x , for points y close to x , to the
directions τi .
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Learning P

• Note that if T = (τ1, . . . , τd) denotes a matrix with orthonormal columns that span
TxM, then P := TT⊤.

• Methods for learning P relate the distance y − x , for points y close to x , to the
directions τi .

• We propose a novel, related method which achieves a faster convergence rate by
correcting for curvature.
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Second order approximation
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Figure: Mean of Frobenius error ∥P− P̂∥F as a function of N, on the 2D torus in R3.
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Interpolation using RBFs

• Given function values f := (f (x1), . . . , f (xN))
⊤ at X = {xj}Nj=1, the radial basis

function (RBF) interpolant of f at x takes the form

Iϕs f(x) :=
N∑

k=1

ckϕs (∥x − xk∥) .
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Interpolation using RBFs

• Given function values f := (f (x1), . . . , f (xN))
⊤ at X = {xj}Nj=1, the radial basis

function (RBF) interpolant of f at x takes the form

Iϕs f(x) :=
N∑

k=1

ckϕs (∥x − xk∥) .

• One common choice of kernel is the Gaussian ϕs(r) = exp(− (sr)2).

• Theoretical advantage: A certain class of RBFs have Reproducing Kernel Hilbert
Space norm which is equivalent to Sobolev space norms [Fuselier and Wright, 2012].
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Laplace-Beltrami Estimators

• Let G : RN → RnN denote the estimate of gradg from before.
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Laplace-Beltrami Estimators

• Let G : RN → RnN denote the estimate of gradg from before.

• In analogy with the Laplace-Beltrami operator, it’s natural to consider

G⊤G : RN → RN

as an estimator of ∆M .

• Alternatively, one can estimate ∆M with

LN := −(G1G1 + · · ·+ GnGn) : RN → RN .
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Convergence of Eigenvalues

Theorem

Let λi denote the i-th eigenvalue of ∆M , enumerated λ1 ≤ λ2 ≤ . . . . For any i , there

exists a sequence λ̂
(N)
i of eigenvalues of LN (or G⊤G) such that∣∣∣λi − λ̂

(N)
i

∣∣∣ → 0

with high probability as N → ∞.
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Let λi denote the i-th eigenvalue of ∆M , enumerated λ1 ≤ λ2 ≤ . . . . For any i , there

exists a sequence λ̂
(N)
i of eigenvalues of LN (or G⊤G) such that∣∣∣λi − λ̂

(N)
i

∣∣∣ → 0

with high probability as N → ∞.

• For the symmetric estimator, we also prove a rate: O
(

1√
N

)
+ O

(
N

−2α+(n−d)
2d

)
.
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Convergence of Eigenvalues

Theorem

Let λi denote the i-th eigenvalue of ∆M , enumerated λ1 ≤ λ2 ≤ . . . . For any i , there

exists a sequence λ̂
(N)
i of eigenvalues of LN (or G⊤G) such that∣∣∣λi − λ̂

(N)
i

∣∣∣ → 0

with high probability as N → ∞.

• For the symmetric estimator, we also prove a rate: O
(

1√
N

)
+ O

(
N

−2α+(n−d)
2d

)
.

• Similar results regarding the convergence of eigenvectors were obtained for G⊤G, but
not for LN .
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Numerical Results

(a) Convergence of Eigenvalues (b) Convergence of Eigenfunctions
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Figure: 4D flat torus in R16. Convergence of (a) NRBF eigenvalues and (b) NRBF eigenfunctions with
respect to learned P̂. GA kernel with s = 0.5 was fixed for all N. The data points are randomly distributed
on the flat torus. The results of DM with N = 30, 000 are also plotted for comparison.
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Numerical Results

(a) DM Eigenvalues (b) SRBF Eigenvalues
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Figure: 2D general torus in R21. Comparison of errors of eigenvalues for (a) DM, (b) SRBF. For each N,
16 independent trials are run and depicted by light color. For each N, the average of all 16 trials are
depicted by dark color.
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Numerical Results

(a) DM Eigenfunctions. (b) SRBF Eigenfunctions.
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Figure: 2D general torus in R21. Comparison of errors of eigenfunctions for (a) DM, (b) SRBF. For each
N, 16 independent trials are run and depicted by light color. For each N, the average of all 16 trials are
depicted by dark color.
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Matrix Estimator of Bochner Laplacian

Definition

The Bochner Laplacian ∆B : X(M) → X(M) is defined by

∆Bu = −div11
(
gradgu

)
.
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• Here gradgu is the gradient of a vector field, and results in a (2, 0) tensor field.
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Matrix Estimator of Bochner Laplacian

Definition

The Bochner Laplacian ∆B : X(M) → X(M) is defined by

∆Bu = −div11
(
gradgu

)
.

• Here gradgu is the gradient of a vector field, and results in a (2, 0) tensor field.

• In local coordinates,

gradgu = gkj

(
∂ui

∂θk
+ upΓipk

)
∂

∂θi
⊗ ∂

∂θj
.
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Spectral Convergence Result for Bochner Laplacian

• Similar to before, one can approximate gradg acting on vector fields with a matrix

H : RnN → RNn×n.
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Spectral Convergence Result for Bochner Laplacian

• Similar to before, one can approximate gradg acting on vector fields with a matrix

H : RnN → RNn×n.

• This gives rise to a symmetric estimator H⊤H of ∆B .

• Similar to before, there is also a non-symmetric estimator LB of ∆B .

Theorem

Let λi denote the i-th eigenvalue of ∆B , enumerated λ1 ≤ λ2 ≤ . . . . For any i , there

exists a sequence of λ̂
(N)
i of eigenvalues of LB (or H⊤H) such that∣∣∣λi − λ̂

(N)
i

∣∣∣ → 0

with high probability as N → ∞.
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Numerical Results
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Figure: 2-Sphere in R3. (a) Mean absolute error of the leading 16 modes for Bochner and Hodge
Laplacians and 20 modes for the Lichnerowicz Laplacian, plotted against N. (b) Absolute error between
the eigenvalues of the Bochner Laplacian and its approximation, over the leading 15 modes.
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Numerical Results
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Figure: 2D Sphere in R3. Comparison of eigen-vector fields of Bochner Laplacian for k = 1, 16. For
NRBF, GA kernel with s = 1.0 is used, and for SRBF, IQ kernel with s = 0.5 is used. The N = 1024 data
points are randomly distributed on the manifold.

46 / 49



Questions?
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